CHANDRA AND RXTE OBSERVATIONS OF 1E 1547.0—5408: COMPARING THE 2008 AND 2009 OUTBURSTS

C.-Y. Ng¹, V. M. KASPI, R. DIB, S. A. OLAUSEN, P. SCHOLZ Department of Physics, McGill University, Montreal, QC H3A 2T8, Canada

T. GÜVER, F. ÖZEL Department of Astronomy, University of Arizona, Tucson, AZ, 85721

F. P. GAVRIIL

NASA Goddard Space Flight Center, Astrophysics Science Division, Code 662, Greenbelt, MD 20771 and Center for Research and Exploration in Space Science and Technology, University of Maryland Baltimore County, Baltimore, MD 21250

AND

P. M. WOODS Corvid Technologies, Huntsville, AL 35806 Draft version August 4, 2010

ABSTRACT

We present results from observations of the magnetar 1E 1547.0–5408 (SGR J1550–5418) taken with the *Chandra X-ray Observatory* and the *Rossi X-ray Timing Explorer* (*RXTE*) following the source's outbursts in 2008 October and 2009 January. During the time span of the *Chandra* observations, which covers days 4 through 23 and days 2 through 16 after the 2008 and 2009 events, respectively, the source spectral shape over the *Chandra*band remained stable, while the pulsar's spin-down rate in the same span in 2008 increased by a factor of 2.2 as measured by *RXTE*. This suggests decoupling between the source's spin-down and radiative changes, hence between the spin-down-inferred magnetic field strength and that inferred spectrally. The lack of spectral variation during flux decay is surprising for models of magnetar outbursts. We also found a strong anti-correlation between the phase-averaged flux and the pulsed fraction in the 2008 and 2009 *Chandra* data, but not in the pre-2008 measurements. We discuss these results in the context of the magnetar model.

Subject headings: pulsars: individual (1E 1547.0-5408, PSR J1550-5418, SGR J1550-5418) — stars: neutron — X-rays: bursts

1. INTRODUCTION

Anomalous X-ray pulsars (AXPs) and soft gamma repeaters (SGRs), though previously thought to be different classes of objects, are now believed to all be strongly magnetized neutron stars, known as 'magnetars'. They are characterized by long spin periods of 2-12s and large spin-down rates that imply ultra-strong surface dipole magnetic fields of $10^{14} - 10^{15}$ G (see reviews by Kaspi 2007 and Mereghetti 2008). The most remarkable feature of magnetars is their violent outbursts, during which the X-ray luminosity could increase by a few orders of magnitude. In the context of the twisted magnetosphere model (Thompson et al. 2002), the energy release is due to magnetic field re-arrangement, which may be triggered by crustal deformation, and the post-outburst recovery provides a powerful diagnostic tool for probing the physical conditions of the magnetosphere and the stellar surface. Observationally, the transient nature of these events requires prompt observations; only a handful of studies have been carried out with focusing X-ray instruments (e.g. Woods et al. 2004; Gavriil et al. 2006; Israel et al. 2007). In this work, we study recent outbursts from the AXP 1E $1547.0-5408^2$ in 2008 and 2009 using observations made with the *Chandra X-ray Observatory* and the *Rossi X-ray Timing Explorer (RXTE)*.

1E 1547.0-5408 was discovered by Lamb & Markert (1981) with the *Einstein Observatory*. Based on its X-ray spectrum and infrared flux, Gelfand & Gaensler (2007) first suggested the source as a magnetar candidate. The detection of radio pulsations by Camilo et al. (2007) directly confirmed the pulsar nature of this source; its spin period of 2.1s is shorter than any other known mag-The pulsar's spin-down rate as reported by Camilo et al. (2007) implies a surface magnetic dipole field strength of 2.2×10^{14} G. Halpern et al. (2008) reported a high state of the source in 2007 based on XMM-Newton observations, and they concluded that an X-ray outburst had occurred in between 2006 and 2007. Since 2008 October 3 (MJD 54742), 1E 1547.0-5408 showed bursting activity with outbursts detected by Swift (Israel et al. 2010) and by the Gamma-ray Burst Monitor (GBM) onboard the Fermi Gamma-ray Space Telescope (Kaneko et al. 2010). On 2009 January 22 (MJD 54853), the AXP entered a second active phase. More than two hundred bursts were detected within a few

² Also known as SGR J1550-5418 or PSR J1550-5418.

³ See the online magnetar catalog http://www.physics.mcgill.ca/ pulsar/magnetar/main.html.

FIG. 1.— Top: RMS pulsed flux of 1E 1547.0–5408 in the 2-10 keV range obtained with RXTE. The red vertical solid lines mark the outbursts in 2008 and 2009, and the arrows indicate the *Chandra* observation epochs. *Bottom*: total and RMS pulsed *Chandra* count rates in the 1-7 keV band, shown by black squares and red triangles in the upper panels, respectively. The statistical uncertainties are negligible. The solid line in 2009 illustrates a power-law fit to the flux decay. Note that the first *Chandra* observation in 2009 was made with the HETG, which precludes a direct comparison of the count rates. Therefore, the data point plotted here is estimated from the spectral analysis results. The lower panels show the best-fit blackbody temperature from the PL+BB model, as listed in Table 2. The green dashed lines indicate the spin-down rate obtained from the phase-coherent RXTE timing solutions. Uncertainties in $\dot{\nu}$ measurements are negligible (at 1% level). [See the electronic edition of the paper for a color version of this figure.]

hours by Swift, INTEGRAL and Fermi GBM (Savchenko et al. 2010; Mereghetti et al. 2009; Kaneko et al. 2010). Follow-up imaging observations with Swift and XMM-Newton revealed dust scattering X-ray rings centered on 1E 1547.0–5408, from which Tiengo et al. (2010) deduced a source distance of 3.9 kpc. Based on Suzaku observations taken 7 days after the 2009 outburst, Enoto et al. (2010) reported a hard power-law tail in the spectrum, with a photon index Γ between 1.33 and 1.55, extending up to at least 110 keV. Hard X-ray pulsations were also detected by INTEGRAL in the 20-150 keV band (Kuiper et al. 2009; den Hartog et al. 2009). The pulsed emission has $\Gamma=1.55$ and the spectral shape remained stable over the observation period covering from day 2 to day 9 after the outburst.

In this paper, we report on results from *Chandra* and *RXTE* observations taken after the 2008 and 2009 events. The observations and results are reported in §2, and we discuss their physical implications in §3. We summarize our findings in §4.

2. OBSERVATIONS AND RESULTS

2.1. RXTE Observations and Results

1E 1547.0—5408 has been monitored regularly with RXTE since the 2008 October outburst. Data are collected with the Proportional Counter Array (PCA) instrument that consists of five collimated xenon/methane multi-anode Proportional Counter Units (PCUs). In this study, GoodXenonwithPropane mode data were used, which give 1- μ s time resolution and 256 energy channels in the 2-60 keV energy range. We considered events from only the top Xenon layer of each PCU to maximize the signal-to-noise ratio. Typical exposure times were in the range 2–7 ks. In all, we report here on a total of 55 observations taken between MJDs 54743 and 54911. A more complete report on the RXTE data will be presented elsewhere (Dib et al, in prep.).

2.1.1. RXTE Timing

To determine the pulsar spin parameters, we cleaned the RXTE data and selected events between 2-6.5 keV. As the source exhibited many short X-ray bursts, we removed all bursts intervals for this analysis. The photon arrival times were first corrected to the solar system barycenter, then binned with 31.25-ms time resolution. The time series were folded at the nominal spin period and pulse arrival times were extracted by

Obs.	Date	MJD	Obs. ID	Days since outburst	Exposure (ks)	Count Rate ^a (s ⁻¹)	Pulsed Fraction ^a						
2008 October													
1	2008-10-07	54746.6	8811	4.2	12.1	1.35(1)	0.21(1)						
2	2008-10-10	54749.5	8812	7.2	15.1	1.17(1)	0.22(1)						
3	2008-10-18	54757.6	8813	15.2	10.1	1.15(1)	0.33(1)						
4	2008-10-21	54760.8	10792	18.4	10.1	1.07(1)	0.35(1)						
5	2008-10-26	54765.1	8814	22.8	23.0	0.99(1)	0.31(1)						
2009 January													
6	2009-01-23	54855.0	10185	2.0	10.1	0.95(1)b	0.09(1)						
7	2009-01-25	54856.7	10186	3.7	12.1	3.1(2)	0.09(1)						
8	2009-01-29	54860.8	10187	7.8	13.1	2.5(1)	0.13(1)						
9	2009-02-06	54868.6	10188	15.6	14.3	2.2(1)	0.12(1)						

TABLE 1 OBSERVATION PARAMETERS AND RESULTS

cross-correlating with a template. These arrival times were then fitted to a simple phase-coherent timing model using the TEMPO software package⁴. Details on the phase folding and periodicity search techniques are described in Dib et al. (2009). Our best-fit timing solution gives a spin frequency $\nu = 0.48277818(5) \,\mathrm{Hz}$, frequency derivative $\dot{\nu} = -6.6(1) \times 10^{-12} \, \mathrm{s}^{-2}$ and second frequency derivative $\ddot{\nu} = -6.2(1) \times 10^{-18} \, \mathrm{s}^{-3}$ covering the 2008 Chandra epochs (reference epoch of MJD 54743.0), and $\nu = 0.4825962(4) \,\mathrm{Hz}, \, \dot{\nu} = -5.17(5) \times 10^{-12} \,\mathrm{s}^{-2} \,\mathrm{with neg}$ ligible $\ddot{\nu}$ for the 2009 Chandra epochs (reference epoch of MJD 54854.0). These values are consistent with those reported by Israel et al. (2010) and Kaneko et al. (2010) based on the 2008 Swift and 2009 Fermi observations, respectively.

2.1.2. RXTE Pulsed Fluxes

Once the timing solution was obtained, we regenerated pulse profiles in the 2-10 keV band, and calculated the RMS pulsed flux according to the formula in Dib et al. (2008), using 7 harmonics. The results are plotted in Figure 1 and reveal a complicated flux evolution. In this study, we focus mainly on time periods near the Chandra epochs, and a full analysis of the RXTE data will be presented by Dib et al. (in prep.). Approximately 11 days after the initial 2008 October 3 (MJD 54742) trigger, during which the pulsed flux decayed roughly monotonically, the pulsed emission abruptly increased again by 80% between two RXTE observations taken on MJDs 54751.2 and 54752.1, then decayed monotonically until it reached a minimum value on MJD 54786.2. Since the onset of this second event is not resolved, we report an upper limit of 1 day for the rise time. This second flux enhancement decayed monotonically for ~34 days; the pulsed count rate in this period can be parameterized by an exponential fall-off with 1/e decay time of ~ 25 days although a linear decay is also consistent with the data. Interestingly, the 2009 event is far less dramatic as seen by RXTE, with a relatively small increase in the pulsed flux observed.

2.2. Chandra Observations and Results

The 2008 outburst of 1E 1547.0-5408 triggered a series of Chandra observations through our Target of Opportunity (ToO) program. Five total pointings were made on days 4, 7, 15, 18 and 23 after the outburst, with exposures ranging from 12 to 23 ks. Data were taken with the ACIS-S detector in continuous clocking (CC) mode, which has a time resolution of 2.85 ms. For the 2009 event, another Chandra ToO program followed the outburst, with four ACIS-S CC mode observations taken on days 2, 4, 8 and 16. The first exposure in 2009 was taken with the High Energy Transmission Grating (HETG). In this study, we include only the zeroth-order events in this latter data set. A summary of observation parameters is provided in Table 1.

We carried out the Chandra data reduction using CIAO 4.2 with CALDB 4.2.0. Source counts in all the data sets were extracted from a 3"-diameter aperture and background counts were from the whole chip excluding the central 40" region (i.e. a total width of 7.7). We note that although there is a nearby source XMMU J155053.7-541925 at 65'' away from the pulsar (Gelfand & Gaensler 2007), the projected separation is greater than 50" in all our CC-mode data. Therefore, it does not contaminate the source counts. The source count rates in the 1-7 keV energy range are reported in Table 1 and plotted in Figure 1, in which the backgrounds have been accounted for, although they are less than 0.5%. The count rates are well below the telemetry limit of Chandra, and pileup is negligible due to the short frame time of the CC-mode exposures. While the source flux changes between epochs, we found no short-term variability within any individual exposure. Employing a test algorithm suggested by Gregory & Loredo (1992), we found < 10% probability of source variability within individual observations, which is not statistically significant. The flux decay in 2009 can be modeled by a power law of index $\alpha = -0.21 \pm 0.01$, which is plotted in Figure 1. However, such a simple relation is not observed in the 2008 flux evolution. In particular, the count rates are very similar between the second and third exposures, which is likely related to the enhanced pulsed flux detected by RXTE.

2.2.1. Chandra Timing

We applied a barycenter correction to the Chandra data and then folded the photon arrival times according to the ephemeris above. The resulting lightcurves are shown in Figure 2. The pulse profiles in 2008 show

 $^{^{\}overline{a}}$ In the $1-7\,keV$ energy range. b Obs. 6 was made with the HETG, which results in a reduced count rate.

⁴ http://www.atnf.csiro.au/research/pulsar/tempo.

Fig. 2.— Pulse profiles of 1E 1547.0—5408 in 1-7 keV obtained from the *Chandra* observations, using 64 phase bins. The RMS pulsed fractions from Table 1 are indicated.

some hints of a multi-peak morphology in the first two observations, then evolve into a single peak. By contrast, the 2009 profiles exhibit a broad peak at first, with a second peak emerging by the third observation. We found no obvious energy dependence of the pulse shape across the *Chandra* 0.5-10 keV band. A direct comparison between the profiles in 2008 and 2009 indicates a much higher pulse modulation in the former. We estimated the RMS pulsed fractions (PFs) in 1-7 keV, and the results are listed in Table 1. We observe a clear trend of increasing pulse modulation as the source recovers after the outbursts.

To look for energy dependence of the modulation, we estimated the PFs in the soft (1-3 keV) and hard (3-7 keV) energy bands separately. In the 2008 data, the latter show a systematically higher PF, with a difference ranging from ΔPF =0.04-0.09 (i.e. a 20-30% change), which is statistically significant given the \sim 0.01 uncertainties. However, such an energy dependence is not observed in 2009, with the PFs in the two bands being consistent with each other.

2.2.2. Chandra Spectroscopy

The Chandra spectra of 1E 1547.0–5408 were extracted using the tool psextract in CIAO, then binned such that every bin has a S/N of at least 10. We performed the spectral fits in the 0.5-7 keV range with XSPEC v12.6.0. All nine datasets were fitted jointly with a single absorption column density $(N_{\rm H})$. We also tried fitting different $N_{\rm H}$ values for the 2008 and 2009 data, and confirmed that they are consistent. We started with simple models including an absorbed blackbody (BB) and an absorbed power-law (PL), but obtained very poor fits (reduced χ^2 values over 1.5). An absorbed black-

FIG. 3.— Best-fit blackbody plus power-law model fit to the 2008 and 2009 *Chandra* spectra (upper panels) with the corresponding residuals (lower panels). Different observations are shown by different colors. The corresponding best-fit spectral parameters are listed in Table 2. [See the electronic edition of the paper for a color version of this figure.]

body plus power-law (BB+PL) model gives much better fits and the results are listed in Table 2 and plotted in Figure 3. As shown in the Figure, the fit residuals suggest a hint of a spectral feature $\sim 1.3\,\mathrm{keV}$, which is more obvious in 2009 than in 2008. However, the significance is only $\sim\!1\sigma$ and deeper exposures are needed to confirm this.

In addition to the BB+PL model, we also considered more physical models that account for the Compton upscattering of thermal photons in the magnetosphere. We tried fitting the Resonant Cyclotron Scattering (RCS; Lyutikov & Gavriil 2006; Rea et al. 2008) and the Surface Thermal Emission and Magnetospheric Scattering (STEMS; Özel 2003; Güver et al. 2006) models to the data. In the latter, the gravitational redshift is fixed at z=0.306 during the fit, corresponding to the canonical neutron star mass of $1.4\,M_\odot$ and radius of $10\,\mathrm{km}$. While these models fit the 2008 data reasonably well, the 2009 spectra clearly require an additional hard component. Therefore, we added a PL to the spectral model in 2009, with Γ fixed at 1.33 according to the Suzaku results (Enoto et al. 2010). Comparing to the BB+PL fit above, these models provide a similar goodness-of-fit

⁵ The *INTEGRAL* results also suggest that the hard-band PL spectral index remained stable over the period of the *Chandra* observations (den Hartog et al. 2009).

TABLE 2 Phase-averaged spectral parameters of 1E 1547.0-5408 for different models

Obs.	$N_{ m H} \ (10^{22} { m cm}^{-2})$	B (10 ¹⁴ G)	$kT \ ({ m keV})$	R (km)	Γ	$f^{ m abs\ a} \ (10^{-11}\ { m ergs} \ { m s}^{-1}\ { m cm}^{-2})$	$F_{ m pl}/F_{ m th}$ b	$\chi^2_ u/ u$						
	Blackbody + Power-law model													
2008														
1	$4.1\pm0.1^{\rm c}$	• • •	0.58 ± 0.03	2.0 ± 0.3	$2.3^{+0.3}_{-0.4}$	1.92 ± 0.03	$1.4^{+1.0}_{-0.6}$	$1.08/1342^{c}$						
2	$4.1\pm0.1^{ extsf{c}}$		0.57 ± 0.02	$2.1^{+0.3}_{-0.2}$	$\substack{2.3^{+0.3}_{-0.4}\\2.3^{+0.3}_{-0.4}}$	1.64 ± 0.02	$1.4^{+1.0}_{-0.6} \ 1.1^{+0.8}_{-0.5}$	$1.08/1342^{c}$						
3	$4.1\pm0.1^{\rm c}$		0.60 ± 0.04	$1.7^{+0.4}_{-0.3}$	2.8 ± 0.3	1.57 ± 0.03	$2.6^{+1.6}$	$1.08/1342^{c}$						
4	$4.1\pm0.1^{\rm c}$		$0.55^{+0.03}_{-0.02}$	$\overset{1.7}{\overset{-0.3}{\overset{-0.4}{\overset{-0.3}{-0.$	$\substack{2.4^{+0.3}_{-0.5}\\2.8^{+0.2}_{-0.3}}$	1.55 ± 0.03	1 0±1.1	$1.08/1342^{c}$						
5	$4.1\pm0.1^{\rm c}$	• • •	0.57 ± 0.02	1.8 ± 0.2	$2.8^{+0.2}_{-0.3}$	1.34 ± 0.02	$\overset{1.2}{\overset{-0.6}{\overset{-0.6}{\overset{-0.8}{\overset{-0.8}{\overset{-0.8}{\overset{-0.8}{\overset{-0.6}{\overset{-0.8}{-0.$	$1.08/1342^{c}$						
2009														
6	$4.1\pm0.1^{ m c}$	• • •	0.49 ± 0.03	$4.4^{+0.8}_{-0.7}$	$2.0^{+0.3}_{-0.4}$	5.11 ± 0.09	$1.6^{+1.8}_{-0.8} \ 1.8^{+1.0}_{-0.6}$	$1.08/1342^{c}$						
7	$4.1\pm0.1^{ m c}$	• • •	0.46 ± 0.02	$\overset{4.4}{\overset{-0.7}{\overset{-0.7}{\overset{-0.5}{-0.$	2.1 ± 0.2	4.61 ± 0.05	$1.8^{+1.0}_{-0.6}$	$1.08/1342^{c}$						
8	$4.1\pm0.1^{ m c}$	• • •	0.47 ± 0.02	$4.0^{+0.6}_{-0.5}$	2.3 ± 0.2	3.67 ± 0.04	$1.8^{+1.0}_{-0.6} \ 2.2^{+1.3}_{-0.8}$	$1.08/1342^{c}$						
9	$4.1\pm0.1^{\rm c}$	•••	$0.44^{+0.02}_{-0.03}$	$4.0_{-0.5}^{+0.5} \ 4.1_{-0.6}^{+0.8}$	2.4 ± 0.2	3.22 ± 0.04	$2.2_{-0.8}^{+0.8}$ $2.7_{-1.0}^{+1.8}$	$1.08/1342^{c}$						
2000	RCS + hard Power-law model													
2008	40.1016		0.45+0.05			1.01 0.00		1.00/19900						
1 2	$4.0 \pm 0.1^{ m c} \ 4.0 \pm 0.1^{ m c}$		$0.47^{+0.05}_{-0.04}\ 0.47\pm0.04$			1.91 ± 0.03 1.63 ± 0.02		1.09/1338 ^c 1.09/1338 ^c						
3	$4.0 \pm 0.1^{\circ}$ $4.0 \pm 0.1^{\circ}$		0.00 ± 0.07			1.56 ± 0.02		1.09/1338 ^c						
4	$4.0 \pm 0.1^{\circ}$		0.43+0.07			1.53 ± 0.03		1.09/1338 ^c						
5	$4.0 \pm 0.1^{\circ}$		$0.43_{-0.03}$ 0.41 ± 0.04			1.33 ± 0.02		1.09/1338°						
2009								,						
6	$4.0 \pm 0.1^{\rm c}$	• • •	$0.32^{+0.05}_{-0.13}$	• • • •	$1.33^{ m d}$	5.11 ± 0.09	0.37 ± 0.08	$1.09/1338^{c}$						
7	$4.0\pm0.1^{\rm c}$		$0.17^{+0.16}_{-0.04}$	• • •	1.33^{d}	4.62 ± 0.05	$\begin{array}{c} 0.37^{+0.14}_{-0.12} \\ 0.30^{+0.05}_{-0.09} \end{array}$	$1.09/1338^{c}$						
8	$4.0\pm0.1^{\rm c}$	• • •	$0.17_{\begin{subarray}{c} -0.04 \\ 0.32_{\begin{subarray}{c} +0.04 \\ -0.16 \end{subarray}}$		1.33^{d}	3.67 ± 0.03		$1.09/1338^{c}$						
9	$4.0\pm0.1^{\text{c}}$		$0.32^{+0.04}_{-0.16} \ 0.13^{+0.18}_{-0.01}$		1.33^{d}	3.23 ± 0.04	$0.27^{+0.11}_{-0.08}$	$1.09/1338^{c}$						
STEMS + hard Power-law model														
2008	4 7 1 0 40	o or ±0.10	0.040±0.011	a od										
1	$4.5 \pm 0.1^{\circ}$	$2.61^{+0.10}_{-0.08}$	$0.313^{+0.011}_{-0.008}$	10 ^d	• • • •	1.90 ± 0.03	• • •	1.08/1329 ^c						
2	$4.5\pm0.1^{\circ}$	$2.69_{-0.07}^{+0.10}$	$0.314^{+0.011}_{-0.005}$	10 ^d		1.62 ± 0.02	• • •	1.08/1330°						
3	$4.5\pm0.1^{\circ}$	2.57 ± 0.06	$0.28^{+0.02}_{-0.06} \ 0.35^{+0.05}_{-0.02}$	10 ^d		1.56 ± 0.03	• • •	1.08/1331°						
4	$4.5\pm0.1^{\circ}$	$3.4^{+0.2}_{-0.3}$	$0.35^{+0.03}_{-0.02}$	10^{d}	* * *	1.53 ± 0.03	• • •	$1.08/1332^{c}$						
5	$4.5\pm0.1^{ extsf{c}}$	$2.62^{+0.06}_{-0.04}$	$0.30^{+0.005}_{-0.07}$	10^{d}	• • •	1.33 ± 0.02	• • •	$1.08/1333^{c}$						
2009	45 1 0 10	$5.4^{+0.9}_{-1.4}$	0.46+0.09	10^{d}	1.33 ^d	F 00 1 0 00	0.01+0.09	1 00 /100 40						
6	$4.5 \pm 0.1^{\circ}$		$0.46^{+0.09}_{-0.13}$	_		5.08 ± 0.09	$0.21^{+0.09}_{-0.11}$	1.08/1334 ^c						
7	$4.5 \pm 0.1^{\circ}$	$3.01^{+0.12}_{-0.09} \ 3.6^{+0.2}_{-0.1}$	0.306 ± 0.003 $0.312^{+0.012}_{-0.002}$	10 ^d	1.33 ^d	4.60 ± 0.05	0.16 ± 0.02 $0.12^{+0.03}_{-0.02}$	1.08/1335 ^c						
8	$4.5 \pm 0.1^{\circ}$	$3.6^{+0.2}_{-0.1}$	$0.312^{+0.012}_{-0.002} \ 0.30^{+0.02}_{-0.011}$	10 ^d	1.33 ^d	3.66 ± 0.04	$0.12^{+0.02}_{-0.02} \ 0.15^{+0.02}_{-0.01}$	1.08/1336 ^c						
9	4.5 ± 0.1^{c}	$3.0_{-0.1}^{-0.6}$	0.30_0.011	10 ^d	1.33 ^d	3.23 ± 0.04	0.15-0.01	1.08/1337 ^c						

Note. — All uncertainties quoted are 90% confidence intervals (i.e. 1.6σ).

in terms of the reduced χ^2 values. Table 2 lists the key parameters of the best-fit models. The scattering optical depth τ is around 1-2 in 2008 and $\gtrsim 3$ in 2009, and the thermal velocity β of the electrons is ~ 0.4 -0.5 in 2008 and ~ 0.2 in 2009 (see Lyutikov & Gavriil 2006, for a detailed definition of these parameters).

3. DISCUSSION

In this paper, we have reported on *Chandra* observations of 1E 1547.0-5408 immediately following its 2008 and 2009 outbursts, along with RXTE timing and pulsed flux behavior following the 2008 outburst and throughout the 2009 event. Next we discuss these observations in the context of the magnetar model.

3.1. Spectral and Spin Evolution

In the twisted magnetosphere model of magnetars (Thompson et al. 2002), the observed X-ray luminosity of a magnetar is determined both by its surface temperature and by magnetospheric currents, the latter due to the twisted dipolar field structure. The surface temperature in turn is determined by the energy output from within the star due to magnetic field decay, as well as on the nature of the atmosphere and the stellar magnetic field strength. This surface thermal emission is resonantly scattered by the current particles, thus resulting in an overall spectrum similar to a Comptonized blackbody (e.g. Lyutikov & Gavriil 2006; Rea et al. 2008; Zane et al. 2009). In this model, the greater the twist angle, the greater the scattering, the harder the spectrum, and the greater the X-ray luminosity L_X . In addition, the surface heating by return currents is believed to con-

^a Absorbed flux in 0.5-7 keV range.

Unabsorbed flux ratio between the power-law and the primary (i.e. blackbody, STEMS, or RCS) components in 0.5-7 keV range.
^c All nine datasets were fitted jointly with a single column density.

d Held fixed in the fit.

tribute substantially to L_X , at least at the same level as the thermal component induced from the interior field decay (Thompson et al. 2002). Magnetar outbursts in this picture occur with sudden increases in twist angle, consistent with the generic hardening of magnetar spectra during outbursts (e.g. Kaspi et al. 2003; Woods et al. 2004; Israel et al. 2007).

Other observational evidence provided in support of the twisted magnetosphere model as proposed by Thompson et al. (2002) is a correlation between magnetar spectral hardness and spin-down-inferred magnetic field strength B, when comparing different sources (Marsden & White 2001; Kaspi & Boydstun 2010). In this case, B is an observational proxy for the magnetospheric twist angle. On the other hand, some magnetars have shown dramatic spin-down rate variations, with order-of-magnitude changes in $\dot{\nu}$ seen on a variety of time scales (e.g. Gavriil & Kaspi 2004; Woods et al. 2004). The origin of these variations is unknown. Nevertheless, in the context of the twisted magnetosphere model, a varying twist angle might naively be expected to be accompanied by a changing $\dot{\nu}$ (due to changing effective B), and corresponding spectral and flux changes. On the other hand, some decoupling between $\dot{\nu}$ and the radiative behavior might be expected, particularly as the spin-down is affected most by a narrow field-line bundle near the light cylinder, whereas the radiation originates from the surface. Field-line twists likely propagate outward (Thompson et al. 2002), which suggests the radiative changes should occur prior to $\dot{\nu}$ changes (Beloborodov & Thompson 2007).

In contrast to the picture in which a magnetar outburst is accompanied by an enhanced magnetospheric twist, Özel & Güver (2007) suggest that in outburst, the magnetosphere may be stable, with radiative evolution being due to changes in the surface thermal emission. Using a spectral model consisting of a resonant Comptonized atmosphere-modified blackbody (the STEMS model), fits to data for XTE J1810–197 (Güver et al. 2007) result in the spectrally inferred B being stable, with all radiative changes being due to changes in the surface thermal emission.

For 1E 1547.0-5408, the source spectrum only showed significant variability over a short period of time ($\sim 1 \, day$) after the 2008 and 2009 outbursts (Israel et al. 2010; Scholz et al. in prep.), but remained stable over the Chandra observations, during which the flux changed greatly (see Table 2). The latter seems opposite to the hardness/flux correlation predicted by the twisted magnetosphere model. More intriguing are the timing results. As described in §2.1.1, we found that the spindown rate $|\dot{\nu}|$ increased by a factor of 2.2 between the first and last *Chandra* observations in 2008 (see §2.1.1), a substantial change even by magnetar standards. For purely dipole spin-down, this naively implies a $\sim 50\%$ increase in the effective surface dipole field strength B, from an initial spin-inferred value of 2.8×10^{14} G at the epoch of the first *Chandra* observation, to a value of 4.1×10^{14} G at the epoch of the last. This is contrary to SGR 1806-20, in which the spectral response lagged behind the torque variation, suggesting some hysteresis in the system (Woods et al. 2007). In our case, the lack of associated spectral changes is unexpected in the twisted

magnetosphere model, unless the spin-down is decoupled from the site of the radiative events, as suggested by Gavriil & Kaspi (2004) for 1E 1048.1—5937. Our results call into question the reliability of spin-down-inferred B values being used when comparing those inferred spectrally.

Indeed, for the 2008 Chandra observations of 1E 1547.0-5408, spectral fits using the STEMS model yield a very similar B-field value for all the observations (see Table 2) in spite of the strongly varying $\dot{\nu}$. One way to reconcile this is to interpret the B-field measured spectroscopically as higher-order multipoles in localized X-ray-emitting regions rather than the global dipole field responsible for spin-down. However, this is hard to reconcile with the fact that the STEMS B values are lower than the spin-inferred value at the epoch of the last 2008 Chandra observation. As an alternative, the extra spin-down torque could be attributed to particle winds (Harding et al. 1999). Comparing the spin-down rates of 1E 1547.0-5408 in 2007 (Camilo et al. 2008), 2008 and 2009 (§2.1.1), it is obvious that the spin-down torque changed drastically between these epochs. Torque variations have been observed in magnetars and ordinary radio pulsars (e.g. Kaspi et al. 2003; Gavriil & Kaspi 2004; Kramer et al. 2006; Lyne et al. 2010; Livingstone et al. 2010). These could be related to changes in plasma conditions in the magnetosphere, which may not necessarily have any observable effects in the radiative properties (see Livingstone et al. 2010). Based on Equation 9 in Harding et al. (1999), a factor of 2.2 increase in $|\dot{\nu}|$, and hence in \dot{E} , requires a steady wind luminosity (L_p) of 1.5 times larger than the dipole spin-down luminosity, implying $L_p \approx 1.5 \times 10^{35} \text{ ergs s}^{-1}$. For a typical X-ray efficiency of below 1%, the particle-induced flux would be below $10^{-12} \text{ ergs cm}^{-2} \text{ s}^{-1}$, hence is likely undetectable, given the source's much higher flux (see Table 2).

In any case, the absence of spectral variations in the presence of flux changes remains puzzling whether or not the magnetospheric twist angle varied in the outburst. Moreover, a reasonable model will need to explain why $\dot{\nu}$ changed drastically following the 2008 event, but stayed constant in 2009. This may reinforce the requirement of decoupling between the spin-down and the source of the radiative changes, hence presumably between the spin-down-inferred B and that inferred spectrally.

3.2. Flux Evolution During the 2008 and 2009 Events

The 2008 and 2009 events exhibited very different flux evolutions. Immediately after the 2009 outburst, the persistent flux increased by a factor of ~ 500 (Scholz et al. in prep.), while the pulsed flux evidently showed only very little variation (less than a factor of 2). We found a monotonic flux decay during the recovery, with a power-law index of -0.21 ± 0.01 , which is comparable to -0.306 ± 0.005 for CXOU J164710.2–455216 (Woods et al. 2010), but not as steep as -0.69 ± 0.03 for 1E 2259+586 or -0.92 ± 0.02 for XTE J1810–197 (Zhu et al. 2008; Woods et al. 2005).

In contrast, the 2008 event is less energetic; the total flux increased by a factor of ~ 100 (Israel et al. 2010), but our RXTE results reveal a pulsed flux variation of a factor of ~ 4 , far greater than in the 2009 event. Also, the flux decay in 2008 showed a more complicated evolu-

tion. As is clear in Figure 1, we observed an additional flux enhancement around MJD 54752, \sim 11 days after the initial trigger, ⁶ lasting for \sim 30 days.

Eichler & Shaisultanov (2010) suggest that radiative outbursts in magnetars could generally be preceded by glitches, with the delay between the two events depending on the depth at which the glitch-induced energy release occurs. For the initial event in 2008, we are unable to tell whether a glitch preceded the radiative outburst, due to the lack of RXTE observations prior to the outburst. However, we can rule out any glitch between the initial 2008 event and the second flux enhancement 10 days later. It is possible that the initial event actually involved glitches occurring in two different places in the stellar interior, at substantially different depths, such that the delays from the glitch to the X-ray enhancement were different, but we note that this picture does not explain the sharp rise of the second flux enhancement.

FIG. 4.— RMS pulsed fraction vs. absorbed flux of 1E 1547.0-5408 in the 1-7 keV band. The filled triangles and squares show the 2008 and 2009 Chandra observations, respectively. The green open circle and red dots represent results from XMM-Newton and Swift, respectively (Halpern et al. 2008; Olausen et al. in prep.; Scholz et al. in prep.), with the XMM-Newton epochs labeled. Note that the 2007 and 2008 XMM-Newton data points are only upper limits, since the values reported in the literature are area pulsed fraction estimates, which are larger than the RMS pulsed fractions by a constant which depends on the pulse shape. The dashed line shows a power-law fit to the Chandra data. [See the electronic edition of the paper for a color version of this figure.]

3.3. Pulsed Fraction Evolution

Our results in §2 clearly indicate a strong anticorrelation between the pulsed fraction and the phaseaveraged X-ray flux, at least during the 2008 and 2009 outbursts. This is plotted in Figure 4, and suggests an approximate power-law relation between the two observables. The trend is also supported by the XMM-Newton and Swift measurements taken in the same period (Olausen et al. in prep.; Scholz et al. in prep.). Similar anti-correlations have been observed in 1E 1048.1-5937 and CXOU J164710.2-455216 (Tam et al. 2008; Israel et al. 2007), while positive correlations were found in XTE J1810-197 and 1E 2259+586 (Gotthelf et al. 2004; Zhu et al. 2008). This variety of behaviors is consistent with the picture in which, from source to source, the location and geometry of the region on the star affected in the outburst are different. Previous studies proposed that an anti-correlation could be the consequence of an increased emitting area due to an outburst, such that part of the hot spot becomes visible at any phase, thus reducing the pulse modulation (e.g. Halpern et al. 2008). We note that this scenario depends critically on the location of emission zone on the stellar surface as well as the viewing geometry (see Bogdanov et al. 2008); it may be possible to obtain either a monotonic increase or decrease of pulsed fraction for the same area 'hot spot' depending on its location on the stellar surface.

We point out that the trend of decreasing pulsed fraction for increasing phase-averaged X-ray flux observed in the Chandra data does not seem to hold for other observations of 1E 1547.0-5408 before 2008. Based on XMM-Newton exposures, Halpern et al. (2008) reported area PFs of 15% in quiescence in 2006 and 7% in the high state in 2007. As shown in Figure 4, these values deviate significantly from the 2008-2009 trend. The discrepancy seems too large to be reconciled by a difference in the instrument response, and is even larger if the differing estimate methods are accounted for. It is possible that the outburst in 2008 induced some permanent changes in the field configuration or emission geometry. The pulse profiles shown in Halpern et al. (2008) also appear to have a different shape from the ones shown in Figure 2, providing further support to this picture.

4. CONCLUSIONS

We have presented results from Chandra and RXTE observations of 1E 1547.0-5408 following its 2008 and 2009 outbursts. These allow a direct comparison between the two events. We found that over the 2008 Chandra observation epochs, the pulsar spin-down rate increased by a factor 2.2, in the absence of corresponding spectral changes, whereas such variation in $\dot{\nu}$ is not observed after the more energetic 2009 event. This provides evidence of decoupling between magnetar spin and radiative properties. The absence of spectral changes simultaneous with significant flux decay is surprising for models of magnetar outbursts. Our results also revealed a strong anti-correlation between the pulsed fraction and phaseaveraged flux of the source. While both 2008 and 2009 data follow the same trend, pre-2008 measurements show significant deviation, suggesting that the 2008 outburst may have induced permanent changes in the emission geometry. Finally, we note that 1E 1547.0-5408 demonstrated significant spectral changes only within the first day after the 2008 and 2009 events, which highlights the importance of prompt observations in future studies for understanding post-outburst relaxation of magnetars.

We thank A. Archibald, S. Bogdanov, M. Livingstone and W. Zhu for useful discussions. C.-Y.N. is a CRAQ postdoctoral fellow. V.M.K. holds the Lorne Trottier Chair in Astrophysics and Cosmology and a Canada Research Chair in Observational Astrophysics. This work

⁶ Although this second enhancement is not reported by Israel et al. (2010) in their study of the *Swift* observations covering the same period, we have re-analysed the same *Swift* dataset and confirmed the pulsed flux enhancement we observe with *RXTE* and *Chandra* (Scholz et al., in prep.).

is supported by an NSERC Discovery Grant, by CIFAR,

and by FQRNT via CRAQ. Facilities: CXO (ACIS) RXTE (PCA)

REFERENCES

Beloborodov, A. M., & Thompson, C. 2007, ApJ, 657, 967 Bogdanov, S., Grindlay, J. E., & Rybicki, G. B. 2008, ApJ, 689,

Camilo, F., Ransom, S. M., Halpern, J. P., & Reynolds, J. 2007, ApJ, 666, L93

Camilo, F., Reynolds, J., Johnston, S., Halpern, J. P., & Ransom, S. M. 2008, ApJ, 679, 681

den Hartog, P. R., Kuiper, L., & Hermsen, W. 2009, The Astronomer's Telegram, 1922

Dib, R., Kaspi, V. M., & Gavriil, F. P. 2008, in American Institute of Physics Conference Series, Vol. 983, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, ed.

C. Bassa, Z. Wang, A. Cumming, & V. M. Kaspi, 239 Dib, R., Kaspi, V. M., & Gavriil, F. P. 2009, ApJ, 702, 614 Eichler, D., & Shaisultanov, R. 2010, ApJ, 715, L142

Enoto, T., et al. 2010, PASJ, 62, 475

Gavriil, F. P., & Kaspi, V. M. 2004, ApJ, 609, L67

Gavriil, F. P., Kaspi, V. M., & Woods, P. M. 2006, ApJ, 641, 418 Gelfand, J. D., & Gaensler, B. M. 2007, ApJ, 667, 1111 Gotthelf, E. V., Halpern, J. P., Buxton, M., & Bailyn, C. 2004,

ApJ, 605, 368

Gregory, P. C., & Loredo, T. J. 1992, ApJ, 398, 146

Güver, T., Özel, F., Göğüş, E., & Kouveliotou, C. 2007, ApJ, 667, L73

Güver, T., Özel, F., & Lyutikov, M. 2006, preprint, astro-ph/0611405

Halpern, J. P., Gotthelf, E. V., Reynolds, J., Ransom, S. M., & Camilo, F. 2008, ApJ, 676, 1178

Harding, A. K., Contopoulos, I., & Kazanas, D. 1999, ApJ, 525, L125

Israel, G. L., Campana, S., Dall'Osso, S., Muno, M. P. Cummings, J., Perna, R., & Stella, L. 2007, ApJ, 664, 448 Israel, G. L., et al. 2010, MNRAS, in press (arXiv:1006.2950)

Kaneko, Y., et al. 2010, ApJ, 710, 1335 Kaspi, V. M. 2007, Ap&SS, 308, 1

Kaspi, V. M., & Boydstun, K. 2010, ApJ, 710, L115 Kaspi, V. M., Gavriil, F. P., Woods, P. M., Jensen, J. B., Roberts, M. S. E., & Chakrabarty, D. 2003, ApJ, 588, L93 Kramer, M., Lyne, A. G., O'Brien, J. T., Jordan, C. A., & Lorimer, D. R. 2006, Science, 312, 549

Kuiper, L., den Hartog, P. R., & Hermsen, W. 2009, The Astronomer's Telegram, 1921

Lamb, R. C., & Markert, T. H. 1981, ApJ, 244, 94 Livingstone, L., Ng, C.-Y., Kaspi, V. M., Gariil, F. P., & Gotthelf, E. V. 2010, ApJ, submitted

Lyne, A., Hobbs, G., Kramer, M., Stairs, I., & Stappers, B. 2010, Science, 329, 408

Lyutikov, M., & Gavriil, F. P. 2006, MNRAS, 368, 690

Marsden, D., & White, N. E. 2001, ApJ, 551, L155

Mereghetti, S. 2008, A&A Rev., 15, 225

Mereghetti, S., et al. 2009, ApJ, 696, L74

Özel, F. 2003, ApJ, 583, 402

Özel, F., & Güver, T. 2007, ApJ, 659, L141

Rea, N., Zane, S., Turolla, R., Lyutikov, M., & Götz, D. 2008, ApJ, 686, 1245 Savchenko, V., Neronov, A., Beckmann, V., Produit, N., &

Walter, R. 2010, A&A, 510, A77

Tam, C. R., Gavriil, F. P., Dib, R., Kaspi, V. M., Woods, P. M., & Bassa, C. 2008, ApJ, 677, 503

Thompson, C., Lyutikov, M., & Kulkarni, S. R. 2002, ApJ, 574,

Tiengo, A., et al. 2010, ApJ, 710, 227

Woods, P. M., Kaspi, V. M., Gavriil, F. P., & Airhart, C. 2010, ApJ, submitted (arXiv:1006.2950)

Woods, P. M., Kouveliotou, C., Finger, M. H., Göğüş, E., Wilson, C. A., Patel, S. K., Hurley, K., & Swank, J. H. 2007, ApJ, 654,

Woods, P. M., et al. 2004, ApJ, 605, 378

. 2005, ApJ, 629, 985

Zane, S., Rea, N., Turolla, R., & Nobili, L. 2009, MNRAS, 398,

Zhu, W., Kaspi, V. M., Dib, R., Woods, P. M., Gavriil, F. P., & Archibald, A. M. 2008, ApJ, 686, 520